
User Guide to lunix,
Comprehensive Unix API Module for Lua

William Ahern

August 1, 2014



Contents

Contents i

1 About 1

2 Dependencies 2
2.1 Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Lua 5.1, 5.2, 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 GNU Make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Installation 3
3.1 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.1 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Usage 5
4.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.1 unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

environ[] . . . . . . . . 5

arc4random . . . . . . . . 5

arc4random buf . . . . . 5

arc4random stir . . . . . 6

arc4random uniform . . . 6

chdir . . . . . . . . . . . 6

chown . . . . . . . . . . . 6

chroot . . . . . . . . . . 6

clock gettime . . . . . . 6

closedir . . . . . . . . . 6

execve . . . . . . . . . . 6

execl . . . . . . . . . . . 7

execlp . . . . . . . . . . 7

execvp . . . . . . . . . . 7

exit . . . . . . . . . . . 7

exit . . . . . . . . . . . . 7

fork . . . . . . . . . . . . 7

getegid . . . . . . . . . . 7

getenv . . . . . . . . . . 7

geteuid . . . . . . . . . . 8

getmode . . . . . . . . . . 8

getgid . . . . . . . . . . 8

getgrnam . . . . . . . . . 8

getifaddrs . . . . . . . . 9

getpid . . . . . . . . . . 9

getpwnam . . . . . . . . . 9

gettimeofday . . . . . . 10

getuid . . . . . . . . . . 10

issetugid . . . . . . . . 10

kill . . . . . . . . . . . . 10

link . . . . . . . . . . . . 10

mkdir . . . . . . . . . . . 11

i



mkpath . . . . . . . . . . 11
opendir . . . . . . . . . . 11
raise . . . . . . . . . . . 11
readdir . . . . . . . . . . 11
rename . . . . . . . . . . 12
rewinddir . . . . . . . . 12
rmdir . . . . . . . . . . . 12
S ISBLK . . . . . . . . . . 12
S ISCHR . . . . . . . . . . 12
S ISDIR . . . . . . . . . . 12
S ISFIFO . . . . . . . . . 12
S ISREG . . . . . . . . . . 13
S ISLNK . . . . . . . . . . 13
S ISSOCK . . . . . . . . . 13
setegid . . . . . . . . . . 13
seteuid . . . . . . . . . . 13
setenv . . . . . . . . . . 13
setgid . . . . . . . . . . 13

setsid . . . . . . . . . . 13

setuid . . . . . . . . . . 14

sigfillset . . . . . . . . 14

sigemptyset . . . . . . . 14

sigaddset . . . . . . . . 14

sigdelset . . . . . . . . 14

sigismember . . . . . . . 14

sigprocmask . . . . . . . 14

sigtimedwait . . . . . . 15

symlink . . . . . . . . . . 15

timegm . . . . . . . . . . 15

truncate . . . . . . . . . 15

tzset . . . . . . . . . . . 15

umask . . . . . . . . . . . 16

uname . . . . . . . . . . . 16

unlink . . . . . . . . . . 16

unsetenv . . . . . . . . . 16

4.1.2 unix.dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

dir:files . . . . . . . . 17
dir:read . . . . . . . . . 17

dir:rewind . . . . . . . . 17
dir:close . . . . . . . . 17

ii



1 About
lunix is a bindings library module to common Unix system APIs. The module is regularly tested
with Linux/glibc, OS X, FreeBSD, NetBSD, OpenBSD, Solaris, and AIX. The best way to describe
it is in contradistinction to luaposix, the most popular bindings module for Unix APIs in Lua.

Thread-safety Unlike luaposix, it strives to be as thread-safe as possible on the host platform.
Interfaces like strerror r and O CLOEXEC are used throughout. The module even includes a novel
solution for the inherently non-thread-safe umask system call, where calling umask from one thread
might result in another thread creating a file with unsafe or unexpected permissions.

POSIX Extensions Unlike luaposix, the library does not restrict itself to POSIX, and emulates
an interface when not available natively on a supported platform. For example, the library provides
arc4random (absent on Linux and Solaris), clock gettime (absent on OS X), and a thread-safe
timegm (absent on Solaris).

Leak-safety Unlike luaposix, the library prefers dealing with FILE handles rather than raw
integer descriptors. This helps to mitigate and prevent leaks or double-close bugs—a common source
of problems in, e.g., asynchronous applications. Routines like chdir or opendir transparently
accept string paths, FILE handles, DIR handles, or even a raw integer descriptors.

1



2 Dependencies
2.1 Operating Systems

lunix targets modern POSIX-conformant and POSIX-aspiring systems. But unlike luaposix it
branches out to implement common GNU and BSD extensions. All interfaces are available on all
supported platforms, regardless of whether the platform provides a native interface.

I try to regularly compile and test the module against recent versions of OS X, Linux/glibc,
FreeBSD, NetBSD, OpenBSD, Solaris, and AIX.

2.2 Libraries

2.2.1 Lua 5.1, 5.2, 5.3

lunix targets Lua 5.1 and above.

2.3 GNU Make

The Makefile requires GNU Make, usually installed as gmake on platforms other than Linux or
OS X. The actual Makefile proxies to GNUmakefile. As long as gmake is installed on non-GNU
systems you can invoke your system’s make.

2



3 Installation
The module is composed of a single C source file to simplify compilation across environments.
Because there several extant versions of Lua often used in parallel on the same system, there are
individual targets to build and install the module for each supported Lua version. The targets all
and install will attempt to build and install both Lua 5.1 and 5.2 modules.

Note that building and installation and can accomplished in a single step by simply invoking one
of the install targets with all the necessary variables defined.

3.1 Building

There is no separate ./configure step. System introspection occurs during compile-time. However,
the “configure” make target can be used to cache the build environment so one needn’t continually
use a long command-line invocation.

All the common GNU-style compiler variables are supported, including CC, CPPFLAGS, CFLAGS,
LDFLAGS, and SOFLAGS. Note that you can specify the path to Lua 5.1, Lua 5.2, and Lua 5.3
include headers at the same time in CPPFLAGS; the build system will work things out to ensure
the correct headers are loaded when compiling each version of the module.

3.1.1 Targets

all

Build modules for Lua 5.1 and 5.2.

all5.1

Build Lua 5.1 module.

all5.2

Build Lua 5.2 module.

all5.3

Build Lua 5.3 module.

3.2 Installing

All the common GNU-style installation path variables are supported, including prefix, bindir,
libdir, datadir, includedir, and DESTDIR. These additional path variables are also allowed:

lua51path

Install path for Lua 5.1 modules, e.g. $(prefix)/share/lua/5.1

lua51cpath

Install path for Lua 5.1 C modules, e.g. $(prefix)/lib/lua/5.1

3



lua52path

Install path for Lua 5.2 modules, e.g. $(prefix)/share/lua/5.2

lua52cpath

Install path for Lua 5.2 C modules, e.g. $(prefix)/lib/lua/5.2

lua53path

Install path for Lua 5.3 modules, e.g. $(prefix)/share/lua/5.3

lua53cpath

Install path for Lua 5.3 C modules, e.g. $(prefix)/lib/lua/5.3

3.2.1 Targets

install

Install modules for Lua 5.1 and 5.2.

install5.1

Install Lua 5.1 module.

install5.2

Install Lua 5.2 module.

install5.3

Install Lua 5.3 module.

4



4 Usage
4.1 Modules

4.1.1 unix

At present lunix provides a single module of routines.

environ[]

Binding to the process-global environ array using metamethods.

index
Utilizes the internal getenv binding.

newindex
Utilizes the internal setenv binding.

pairs
Takes a snapshot of the environ table to be used by the returned iterator for key–value loops.
Other than Solaris1, no system supports thread-safe access of the environ global.

ipairs
Similar to pairs, but the iterator returns an index integer as the key followed by the envi-
ronment variable as a single string—“FOO=BAR”.

call
Identical to the pairs metamethod, to be used to create an iterator directly as Lua 5.1
doesn’t support pairs.

arc4random()

Returns a cryptographically strong uniformly random 32-bit integer as a Lua number. On Linux the
RANDOM UUID sysctl feature is used to seed the generator. This avoids fiddling with file descriptors,
and also works in a chroot jail. On other platforms without a native arc4random interface, such as
Solaris, the implementation must resort to /dev/urandom for seeding.

Note that unlike the original implementation on OpenBSD, arc4random on OS X and FreeBSD
(prior to 10.0) seeds itself from /dev/urandom. This could cause problems in chroot jails.

arc4random buf(n)

Returns a string of length n containing cryptographically strong random octets using the same
CSPRNG underlying arc4random.

1See https://blogs.oracle.com/pgdh/entry/caring for the environment making

5



arc4random stir()

Stir the arc4random entropy pool using the best available resources. This normally should be
unnecessary.

arc4random uniform([n])

Returns a cryptographically strong uniform random integer in the interval [0, n− 1] where n ≤ 232.
If n is omitted the interval is [0, 232 − 1] and effectively behaves like arc4random.

chdir(dir)

If dir is a string, attempts to change the current working directory using chdir. Otherwise, if dir is
a FILE handle referencing a directory, or an integer file descriptor referencing a directory, attempts
to change the current working directory using fchdir.

Returns true on success, otherwise returns false, an error string, and an integer system error.

chown(file[, uid][, gid])

file may either be a string path for use with chown, or a FILE handle or integer file descriptor for
use with fchown. uid and gid may be integer values or symbolic string names.

Returns true on success, otherwise returns false, an error string, and an integer system error.

chroot(path)

Attempt to chroot to the specified string path.

Returns true on success, otherwise returns false, an error string, and an integer system error.

clock gettime(id)

id should be the string “realtime” or “monotonic”, or the integer constant CLOCK REALTIME
or CLOCK MONOTONIC.

Returns a time value as a Lua floating point number, otherwise returns nil, an error string, and
an integer system error.

closedir(dir)

Closes the DIR handle, releasing the underlying file descriptor.

execve(path[, argv][, env])

Executes path, replacing the existing process image. path should be an absolute pathname as the
$PATH environment variable is not used. argv is a table or ipairs–iterable object specifying the
argument vector to pass to the new process image. Traditionally the first such argument should
be the basename of path, but this is not enforced. If absent or empty the new process image will
be passed an empty argument vector. env is a table or ipairs–iterable object specifying the new
environment. If absent or empty the new process image will contain an empty environment.

6



On success never returns. On failure returns false, an error string, and an integer system error.

execl(path, . . .)

Executes path, replacing the existing process image. The $PATH environment variable is not used.
Any subsequent arguments are passed to the new process image. The new process image inherits
the current environment table.

On success never returns. On failure returns false, an error string, and an integer system error.

execlp(file, . . .)

Executes file, replacing the existing process image. The $PATH environment variable is used to
search for file. Any subsequent arguments are passed to the new process image. The new process
image inherits the current environment table.

On success never returns. On failure returns false, an error string, and an integer system error.

execvp(file[, argv])

Executes file, replacing the existing process image. The $PATH environment variable is used to
search for file. Any subsequent arguments are passed to the new process image. The new process
image inherits the current environment table.

On success never returns. On failure returns false, an error string, and an integer system error.

exit([status])

Exits the process immediately without first flushing and closing open streams, or calling atexit

handlers. If status is boolean true or false, exits with EXIT SUCCESS or EXIT FAILURE, re-
spectively. Otherwise, status is an optional integer status value which defaults to 0 (EXIT SUCCESS).

exit([status])

Like exit, but first flushes and closes open streams, and calls atexit handlers.

fork()

Forks a new process. On success returns the PID of the new process in the parent and the integer
0 in the child. Otherwise returns false, an error string, and an integer system error.

getegid()

Returns the effective process GID as a Lua number.

getenv(name)

Returns the value of the environment variable name as a string, or nil if it does not exist.

7



Not thread-safe on any system other than Solaris2 and NetBSD3. On Linux getenv is thread-
tolerant as pointers returned from getenv will remain valid throughout the lifetime of the process,
but Linux will write over existing values on update so concurrent use with setenv could lead to
inconsistent views.

geteuid()

Returns the effective process UID as a Lua number.

getmode(mode[, omode])

The getmode interface derives from the routine so-named in almost every chmod(1) utility imple-
mentation and which exposes the parser for symbolic file permissions.

mode should be a symbolic mode value with a valid syntax as described by POSIX within the
chmod(1) utility man page. If specified, omode should be an integer or a string in decimal, hex-
idecimal, or octal notation, and represents the original mode value used by the symbolic syntax for
inheritance.

getgid()

Returns the real process GID as a Lua number.

getgrnam(grp[, . . .])

grp is an integer GID or string symbolic group name suitable for use by either getgrgid(3) or
getgrnam(3), respectively.

If no other arguments are specified, on success returns a table with the following fields

.name
Symbolic group name as a string, or nil if absent.

.passwd
Password information as a string, or nil if absent.

.gid
GID as integer.

.mem
Array of supplementary group names, or nil if absent.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list. “members” may be used as an alternative to “mem”. Note that the
return value may be nil if the field was absent.

If no group was found, returns nil followed by the error string “no such group”.

If a system error occurred, returns nil, an error string, and an integer system error.
2See https://blogs.oracle.com/pgdh/entry/caring for the environment making
3NetBSD provides getenv r(3)

8



getifaddrs([. . .])

Returns an iterator over the current system network interfaces on success. If a system error oc-
curred, returns nil, an error string, and an integer system error.

If no arguments are specified, each invocation of the iterator returns a table with the following
fields

.name
Interface symbolic name as a string.

.flags
Interface flags as an integer bit field.

.family
Interface address family as an integer.

.addr
Interface address as a string, or nil if of an unknown address family.

.netmask
Interface address netmask as a string, or nil if absent or of an unknown address family.

.prefixlen
Interface address prefixlen as an integer, or nil if absent or of an unknown address family.

.dstaddr
Interface destination address if point-to-point, or nil if absent or of an unknown address
family.

.broadaddr
Interface broadcast address, or nil if absent or of an unknown address family.

If arguments are given, each field specified (as named above) is returned as part of the return value
list on every invocation of the iterator.

getpid()

Returns the process ID as a Lua number.

getpwnam(usr[, . . .])

usr is an integer UID or string symbolic user name suitable for use by either getpwuid(3) or
getpwnam(3), respectively.

If no other arguments are specified, on success returns a table with the following fields

.name
Symbolic user name as a string, or nil if absent.

9



.passwd
Password information as a string, or nil if absent.

.uid
UID as integer.

.gid
Primary GID as integer.

.dir
Home directory path, or nil if absent.

.shell
Login shell path, or nil if absent.

.gecos
Additional user information, or nil if absent.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list. Note that the return value may be nil if the value was empty in the
database.

If no user was found, returns nil followed by the error string “no such user”.

If a system error occurred, returns nil, an error string, and an integer system error.

gettimeofday([ints])

Returns the current time as a Lua floating point number or, if ints is true, as two integers repre-
senting seconds and microseconds.

On failure returns nil, an error string, and an integer system error.

getuid()

Returns the real process UID as a Lua number.

issetugid()

Returns true if the process environment is considered unsafe because of setuid, setgid, or similar
operations, otherwise false.

kill(pid, signo)

Sends signal signo to process or process group pid. Returns true on success, otherwise false, an
error string, and an integer system error.

link(path1, path2)

Creates a new directory entry at path2 as a hard link to path1.

Returns true on success, otherwise false, an error string, and an integer system error.

10



mkdir(path[, mode])

Create a new directory at path. mode, if specified, should be a symbolic mode string following the
POSIX syntax as described by the chmod(1) utility man page. Otherwise, mode defaults to 0777.
In either case, mode is masked by the process umask.

Returns true on success, otherwise false, an error string, and an integer system error.

mkpath(path[, mode][, imode])

Like mkdir, but also creates intermediate directories if missing. imode is the mode for intermediate
directories. Like mode it is restricted by the process umask, but unlike mode the user write bit is
unconditionally set to ensure the full path can be created.

Returns true on success, otherwise false, an error string, and an integer system error.

opendir(path|file|dir|fd)

Creates a DIR handle for reading directory entries. Caller may specify a path string, a Lua FILE
handle, another DIR handle, or an integer descriptor. In the latter three cases, the underlying
descriptor is duplicated using dup3 (if available) or dup2 because there’s no safe way to steal the
descriptor from existing FILE or DIR handles. But it’s not a good idea to mix reads between the
two original and duplicated descriptors as they will normally share the same open file entry in the
kernel, including the same position cursor.4

Returns a DIR handle on success, otherwise nil, an error string, and an integer system error.

raise(signo)

Sends signal signo to calling thread. Returns true on success, otherwise false, an error string,
and an integer system error.

readdir(dir[, field . . .])

Reads the next directory entry. If no field arguments are specified, on success returns a table with
the following fields

.name
Name of file.

.ino
Inode of file.

.type
A numeric value describing the file type, similar to the “mode” field returned by stat, except
without any permission bits present. You can pass this value to S ISREG, S ISDIR, S ISFIFO,
etc.

Available on Linux and BSD derivatives, but, e.g., will be nil on Solaris.

4In the future may add ability to open /proc/self/fd or /dev/fd entries, which should create a new open file entry.

11



If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list. Note that the return value may be nil if the value was unavailable.

If the end of directory entries has been reached, returns nil.

If a system error occurred, returns nil, an error string, and an integer system error.

rename(path1, path2)

Renames the file path1 to path2. The paths must reside on the same device.

Returns true on success, otherwise false, an error string, and an integer system error.

rewinddir(dir)

Rewinds the DIR handle so the directory entries may be read again.

rmdir(path)

Remove the directory at path.

Returns true on success, otherwise false, an error string, and an integer system error.

S ISBLK(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a block
device.

Returns true or false.

S ISCHR(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a char-
acter device.

Returns true or false.

S ISDIR(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a di-
rectory.

Returns true or false.

S ISFIFO(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a FIFO
or pipe.

Returns true or false.

12



S ISREG(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a regular
file.

Returns true or false.

S ISLNK(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a sym-
bolic link.

Returns true or false.

S ISSOCK(mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a socket.

Returns true or false.

setegid(gid)

Set the effective process GID to gid. gid must be an integer or symbolic group name.

Returns true on success, otherwise false, an error string, and an integer system error.

seteuid(uid)

Set the effective process UID to uid. uid must be an integer or symbolic user name.

Returns true on success, otherwise false, an error string, and an integer system error.

setenv(name, value[, overwrite])

Sets the environment variable name to value. If the variable already exists then it is not changed
unless overwrite is true. overwrite defaults to true.

Returns true on success, otherwise false, an error string, and an integer system error.

This function is thread-safe on Solaris, NetBSD, and Linux. But see note at getenv. FreeBSD and
OpenBSD are confirmed to be not thread-safe. The status of AIX and OS X is unknown.

setgid(gid)

Set the real process GID to gid. gid must be an integer or symbolic group name.

Returns true on success, otherwise false, an error string, and an integer system error.

setsid()

Create a new session and process group.

Returns the new process group ID on success, otherwise nil, an error string, and an integer system
error.

13



setuid(uid)

Set the real process UID to uid. uid must be an integer or symbolic user name.

Returns true on success, otherwise false, an error string, and an integer system error.

sigfillset([set])

Returns a sigset t userdata object with all bits filled. If set is specified should be an existing sigset t
userdata object to reuse.

sigemptyset([set])

Returns a sigset t userdata object with all bits cleared. If set is specified should be an existing
sigset t userdata object to reuse.

sigaddset(set[, signo . . .])

Returns a sigset t userdata object with the specified signals set. If set is not a sigset t object, a
new, empty sigset t is instantiated and initialized according to whether set is nil, an integer signal
number, an array of integer signal numbers, or the string “*” (filled) or “” (empty). If specified,
signo and additional arguments should be integer signal numbers to be added to the sigset t object.

sigdelset(set[, signo . . .])

Like sigaddset, but signo and subsequent integer signal numbers are cleared from the sigset t
object.

sigismember(set, signo)

Returns true if signo is a member of sigset t set, otherwise false.

sigprocmask([how, set[, oset]])

If how and set are defined, sets the signal mask of the current process or thread. how should be
one of SIG BLOCK, SIG UNBLOCK, or SIG SETMASK. set should be a sigset t userdata object, or a
number, string, or array suitable for initializing a sigset t object as discussed in sigaddset.

Returns the old mask as a sigset t userdata object on success, otherwise nil, an error string, and
an integer system error. oset is an optional sigset t userdata object to be reused as the return
value, and is first cleared before passing to the system call.

Whether the process or thread mask is set is implementation defined, and varies across platforms.
Threaded applications should use pthread sigmask, which is guaranteed to set the mask of the
current thread.5 Unfortunately, there is no interface which is guaranteed to only set the process
mask. New threads inherit the mask of the creating thread, so standard practice is typically to block
everything in the main thread while creating new threads.

5Use of pthread sigmask requires linking with –lpthread on some platforms and for this reason is presently not
supported by lunix.

14



sigtimedwait(set[, timeout])

Atomically clears any pending signal specified in set from the pending set of the process and thread.
If none are pending, waits for timeout seconds, or indefinitely if timeout is not specified. Fractional
seconds are supported.

On success returns an integer signal number cleared from the pending set and an array representing
the members of the siginfo t structure (without the “si ” prefix).6 On error returns nil, an error
string, and an integer system error. If timeout is specified and no signal was cleared before the
timeout, the system error will be ETIMEDOUT.

OS X and OpenBSD lack a native sigtimedwait implementation. On OS X lunix uses sigpending
and sigwait to emulate the behavior. However, in a multi–threaded application if another thread
clears a signal between sigpending and sigwait then sigwait could block indefinitely. There’s no
way to solve this race condition.7 On OpenBSD sigwait is only available through libpthread, but
on OpenBSD libpthread must be loaded at process load–time and cannot be brought in as a dlopen

run–time dependency. Therefore an alternative emulation is used which clears the pending signal by
installing a noop signal handler. This is not thread-safe if another thread is also installing a signal
handler simultaneously. Threaded applications on these platforms should be mindful of these limi-
tations. The cqueues project supports thread-safe signal listening with kqueue on both OpenBSD
and Mac OS X.

symlink(path1, path2)

Creates a new directory entry at path2 as a symbolic link to path1.

Returns true on success, otherwise false, an error string, and an integer system error.

timegm(tm)

tm is a table of the form returned by the Lua routine os.date("*t"). This allows converting a
datetime in GMT directly to a POSIX timestamp without having to change the process timezone,
which is inherently non-thread-safe.

Returns a POSIX timestamp as a Lua number.

truncate(file[, size])

Truncate file to size bytes (defaults to 0). file should be a string path, or FILE handle or integer
file descriptor.

Returns true on success, otherwise false, an error string, and an integer system error.

tzset()

Initializes datetime conversion information according to the TZ environment variable, if available.

Return true.

6Currently only the .si signo member is copied from siginfo t.
7One possible solution is to explicitly raise the signal before calling sigpending, but this solutions relies on

untested assumptions about signal handling on these platforms.

15



umask([cmask])

If cmask is specified, sets the process file creation mask and returns the previous mask as a Lua
number.

If cmask is not specified, queries the process umask in a thread-safe manner and returns the mask
as a Lua number.

uname([. . .])

If no arguments are given, on success returns a table with the following fields

.sysname
Name of the current system as a string.

.nodename
Name of this node within an implementation-defined communications network as a string.

.release
Release name of the operating system as a string.

.version
Version of the operating system as a string.

.machine
Hardware description of the system as a string.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list.

On failure returns nil, an error string, and an integer system error.

unlink(path)

Deletes the file entry at path.

Returns true on success, otherwise false, an error string, and an integer system error.

unsetenv(name)

Deletes the environment variable name from the environment table.

Returns true on success, otherwise false, an error string, and an integer system error.

This function is thread-safe on Solaris, NetBSD, and Linux. But see note at getenv. Also see note
at setenv.

4.1.2 unix.dir

The unix.dir module implements the prototype for DIR handles, as returned by unix.opendir.

16



dir:files([field . . .])

Returns an iterator over unix.readdir(. . .).

dir:read([field . . .])

Identical to unix.readdir.

dir:rewind()

Identical to unix.rewinddir.

dir:close()

Identical to unix.closedir.

17


	Contents
	About
	Dependencies
	Operating Systems
	Libraries
	Lua 5.1, 5.2, 5.3

	GNU Make

	Installation
	Building
	Targets

	Installing
	Targets


	Usage
	Modules
	unix
	environ[]
	arc4random
	arc4random_buf
	arc4random_stir
	arc4random_uniform
	chdir
	chown
	chroot
	clock_gettime
	closedir
	execve
	execl
	execlp
	execvp
	_exit
	exit
	fork
	getegid
	getenv
	geteuid
	getmode
	getgid
	getgrnam
	getifaddrs
	getpid
	getpwnam
	gettimeofday
	getuid
	issetugid
	kill
	link
	mkdir
	mkpath
	opendir
	raise
	readdir
	rename
	rewinddir
	rmdir
	S_ISBLK
	S_ISCHR
	S_ISDIR
	S_ISFIFO
	S_ISREG
	S_ISLNK
	S_ISSOCK
	setegid
	seteuid
	setenv
	setgid
	setsid
	setuid
	sigfillset
	sigemptyset
	sigaddset
	sigdelset
	sigismember
	sigprocmask
	sigtimedwait
	symlink
	timegm
	truncate
	tzset
	umask
	uname
	unlink
	unsetenv

	unix.dir
	dir:files
	dir:read
	dir:rewind
	dir:close




